Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Med ; 20(1): 25, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1690915

ABSTRACT

Relationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with the control of the viral load. Neutralising antibodies correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralising antibodies. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Viral Load
2.
Nat Med ; 26(9): 1411-1416, 2020 09.
Article in English | MEDLINE | ID: covidwho-707103

ABSTRACT

The burden of malaria is heavily concentrated in sub-Saharan Africa (SSA) where cases and deaths associated with COVID-19 are rising1. In response, countries are implementing societal measures aimed at curtailing transmission of SARS-CoV-22,3. Despite these measures, the COVID-19 epidemic could still result in millions of deaths as local health facilities become overwhelmed4. Advances in malaria control this century have been largely due to distribution of long-lasting insecticidal nets (LLINs)5, with many SSA countries having planned campaigns for 2020. In the present study, we use COVID-19 and malaria transmission models to estimate the impact of disruption of malaria prevention activities and other core health services under four different COVID-19 epidemic scenarios. If activities are halted, the malaria burden in 2020 could be more than double that of 2019. In Nigeria alone, reducing case management for 6 months and delaying LLIN campaigns could result in 81,000 (44,000-119,000) additional deaths. Mitigating these negative impacts is achievable, and LLIN distributions in particular should be prioritized alongside access to antimalarial treatments to prevent substantial malaria epidemics.


Subject(s)
Antimalarials/therapeutic use , Coronavirus Infections/epidemiology , Malaria/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/parasitology , Coronavirus Infections/virology , Humans , Insecticides/therapeutic use , Malaria/complications , Malaria/parasitology , Malaria/virology , Mosquito Control , Pneumonia, Viral/complications , Pneumonia, Viral/parasitology , Pneumonia, Viral/virology , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL